The response of Na(V)1.3 sodium channels to ramp stimuli: multiple components and mechanisms.
نویسندگان
چکیده
Na(V)1.3 voltage-gated sodium channels have been shown to be expressed at increased levels within axotomized dorsal root ganglion neurons and within injured axons within neuromas and have been implicated in neuropathic pain. Like a number of other sodium channel isoforms, Na(V)1.3 channels produce a robust response to slow ramplike stimuli. Here we show that the response of Na(V)1.3 to ramp stimuli consists of two components: an early component, dependent upon ramp rate, that corresponds to a window current that is dependent upon closed-state inactivation; and a second component at more depolarized potentials that is correlated with persistent current which is detected for many tens of milliseconds after the start of a depolarizing pulse. We also assessed the K354Q Na(V)1.3 epilepsy-associated mutant channel, which is known to display an enhanced persistent current and demonstrate a strong correlation with the second component of the ramp response. Our results show that a single sodium channel isoform can produce a ramp response with multiple components, reflecting multiple mechanisms, and suggest that the upregulated expression of Na(V)1.3 in axotomized dorsal root ganglion neurons and enhanced ramp current in K354Q mutant channels can contribute in several ways to hyperexcitability and abnormal spontaneous firing that contribute to hyperexcitability disorders, such as epilepsy and neuropathic pain.
منابع مشابه
Nav 1 . 3 ramp currents 1 The response of NaV 1 . 3 sodium channels to ramp stimuli : multiple components and 1 mechanisms
41 42 Nav1.3 voltage-gated sodium channels have been shown to be expressed at increased levels 43 within axotomized dorsal root ganglion (DRG) neurons and within injured axons within neuromas and 44 have been implicated in neuropathic pain. Like a number of other sodium channel isoforms, Nav1.3 45 channels produce a robust response to slow ramplike stimuli. Here we show that the response of Nav...
متن کاملA sodium channel mutation linked to epilepsy increases ramp and persistent current of Nav1.3 and induces hyperexcitability in hippocampal neurons.
Voltage-gated sodium channelopathies underlie many excitability disorders. Genes SCN1A, SCN2A and SCN9A, which encode pore-forming alpha-subunits Na(V)1.1, Na(V)1.2 and Na(V)1.7, are clustered on human chromosome 2, and mutations in these genes have been shown to underlie epilepsy, migraine, and somatic pain disorders. SCN3A, the gene which encodes Na(V)1.3, is part of this cluster, but until r...
متن کاملExpression, Purification and Docking Studies on IMe-AGAP, the First Antitumor-analgesic Like Peptide from Iranian Scorpion Mesobuthus eupeus
Scorpion venom contains different toxins with multiple biological functions. IMe-AGAP is the first Analgesic-Antitumor like Peptide (AGAP) isolated from Iranian scorpion Mesobuthus eupeus. This peptide is similar to AGAP toxin with high analgesic activity, extracted from Chinese scorpion and inhibits NaV1.8 and NaV1.9 voltage-gated sodium channels involved in the ...
متن کاملExpression, Purification and Docking Studies on IMe-AGAP, the First Antitumor-analgesic Like Peptide from Iranian Scorpion Mesobuthus eupeus
Scorpion venom contains different toxins with multiple biological functions. IMe-AGAP is the first Analgesic-Antitumor like Peptide (AGAP) isolated from Iranian scorpion Mesobuthus eupeus. This peptide is similar to AGAP toxin with high analgesic activity, extracted from Chinese scorpion and inhibits NaV1.8 and NaV1.9 voltage-gated sodium channels involved in the ...
متن کاملMolecular identification and functional role of voltage-gated sodium channels in rat carotid body chemoreceptor cells. Regulation of expression by chronic hypoxia in vivo.
We have assessed the expression, molecular identification and functional role of Na+ channels (Na(v)) in carotid bodies (CB) obtained from normoxic and chronically hypoxic adult rats. Veratridine evoked release of catecholamines (CA) from an in vitro preparation of intact CBs obtained from normoxic animals, the response being Ca2+ and Na+-dependent and sensitive to tetrodotoxin (TTX). TTX inhib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 109 2 شماره
صفحات -
تاریخ انتشار 2013